Nuclear Spin Control in GaAs Quantum Dots via Nuclear Quadrupole Resonance

Leonardo S. Cardinale^{1*}, Dorian A. Gangloff¹

1.Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom

THE HYPERFINE INTERACTION AND QUANTUM MEMORY IN QDs

- Quantum dots (QDs) are an attractive system for quantum information storage and processing in a network.
- Qubits are realized using an optically active electron spin confined in all directions to length scales of 10 nm, whose energy levels are Zeeman-split using a constant magnetic field, interacting with 10⁴ – 10⁶ nuclei within the QD[1].
- The electron can be driven with electromagnetic radiation, and its state can be read out using spin selective optical transitions.
- Electrons in QDs can exhibit coherence times of the order of 100 μs [2], while nuclei can achieve coherence times of the order of 100 ms [3].

Fig. 1: Illustration of a QD, with an optically driven (red beam) electron spin in light blue in the center, surrounded by "smaller" nuclear spins

- The central electron is coupled to neighboring nuclei via the hyperfine interaction, which can be used to transfer electron spin states to this nuclear register [4,5] with significantly longer coherence times, effectively realizing quantum memory.
- Protocols to implement and protect such a memory requires accurate and efficient control of the nuclear spin register.

NUCLEAR QUADRUPOLE RESONANCE

- Nuclear spins are traditionally controlled via nuclear magnetic resonance (NMR). However, NMR is constrained by the requirement of driving large currents in proximal coils, which causes unwanted heating in cryogenic environments, thus limiting scalability.
- Our goal is to develop a new way of inducing nuclear spin transitions in GaAs QDs using nuclear quadrupole resonance (NQR), a method based on the quadrupolar coupling between the spin-3/2 nuclei and an oscillating electric field gradient (EFG).

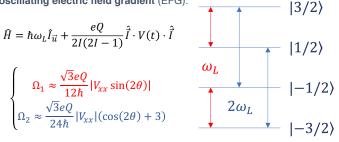


Fig. 2: Nuclear spin energy level diagram

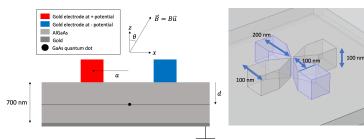


Fig. 3: Schematic representation of the setup for electrode-based NQR

Fig. 4: Typical electrode geometry (from a COMSOL simulation)

ELECTRIC FIELD GRADIENTS AND RESONANT DRIVING

- Electrodes forming a **quadrupole** with sinusoidally oscillating electric potentials close to the **transition frequencies** of the nuclei, related to the Larmor frequency ω_L .
- Toy model solved analytically using the quasistatic approximation, and more realistic model using COMSOL which accounts for the polarizability of the medium.
- Experiments will need to make use of resonant LC circuits, with a
 matching inductor L. To this end, we've also modeled and simulated the
 capacitance C between electrodes.

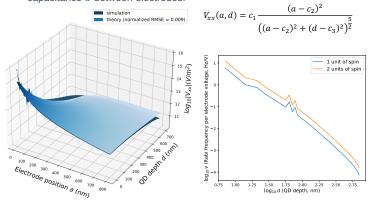


Fig. 5: Largest component of EFG per electrode voltage

Fig. 6: Maximum Rabi frequency per electrode voltage

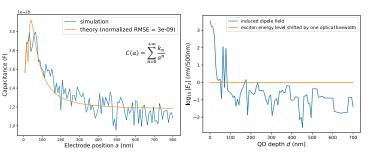


Fig. 7: Electrode capacitance

Fig. 8: Induced dipole fields in the sample per electrode voltage

CONCLUSIONS & FUTURE WORK

- AC quadrupole electrodes etched onto an AlGaAs sample can be used to drive QD nuclear spin transitions locally.
- Main challenges in NQR: obtaining sufficiently high Rabi frequencies and avoiding unwanted dipole fields in the material for realistic dimensions and applied voltages.
- Resonant circuit driving can help reduce generator voltage drastically, but this still requires very high voltages on the electrodes relative to the relevant breakdown voltages (air: 0.3 V, high vacuum: 10 – 100 V).
- One could also implement NQR using strain waves which generate time-dependent EFGs. This will be addressed in future work.

REFERENCES

- [1] Chekhovich, E. et al. Nuclear spin effects in semiconductor quantum dots. Nature materials 12, 494–504 (2013).
- [2] Zaporski, L. et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. Nature Nanotechnology, 1–7 (2023).
- [3] Chekhovich, E. A., da Silva, S. F. C. & Rastelli, A. Nuclear spin quantum register in an optically active semiconductor quantum dot. Nature Nanotechnology 15, 999–1004 (2020).
- [4] Taylor, J., Marcus, C. & Lukin, M. Long-lived memory for mesoscopic quantum bits. Physical review letters 90, 206803 (2003).
- [5] Denning, E. V., Gangloff, D. A., Atatüre, M., Mørk, J. & Le Gall, C. Collective quantum memory activated by a driven central spin. Physical review letters 123, 140502 (2019).